
16:45 - 17:45, Thur, 15th September 2022

60 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah

1

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Abstract

Games, desktop software, phone apps, and almost every software that a user interacts with has
some sort of event handling system. In order to handle events, a common behavior design
pattern known as the 'observer pattern' allows one or more objects to monitor if a change of state
takes place in another object. In this talk, we are going to do a deep dive into the behavioral
design pattern known as the observer. The pattern utilizes a Subject and Observer (or publisher
and subscriber) model to notify when state has changed from the subject to one or more
observers in order to help make our software more maintainable, extensible, and flexible.

I will show some examples of the observer in modern C++ as well as real world use cases of
where observers are used for further study. Finally, I'll discuss the tradeoffs of the observer
pattern, and discuss which scenarios you may not actually want to use the observer pattern.
Attendees will leave this talk with the knowledge to go forward and implement the observer
pattern, as well as how to spot the observer design pattern in projects they may already be
working on!

2

Please do not redistribute slides without prior
permission.

3

Exercise (1/3)

4

https://downloadcentral.dk/upload/datas/hvorforsucces.gif

● Let’s take a look at a
sample program.

● What types of
‘events’ do you see?

● (Or another way to
state, what
subsystems are
involved)

https://downloadcentral.dk/upload/datas/hvorforsucces.gif

Exercise (2/3)

● Let’s take a look at a
sample program.

● What types of
‘events’ do you see?

● (Or another way to
state, what
subsystems are
involved)

5

Physics Scoring

Bird Sounds

Maybe a ‘log’ created Maybe some ‘GameState’ keeping track of
progress

Animations

6

Physics Scoring

Bird Sounds

Maybe a ‘log’ created Maybe some ‘GameState’ keeping track of
progress

Animations

Exercise (3/3)

● Let’s take a look at a
sample program.

● What types of
‘events’ do you see?

● (Or another way to
state, what
subsystems are
involved)

We have witnessed one action
(bird collision or bird slingshot)
taking place, and many
subsystems/events that respond.

Code Exercise (1/3)

7

● Take a look at this pseudo code for
how one might implement this system

○ What problem(s) do you see?

Code Exercise (2/3)

8

● Take a look at this pseudo code for
how one might implement this system

○ What problem(s) do you see?
○ Besides the deep nesting, and perhaps

complicated logic-- what I notice is how
‘coupled’ this code is.

(This is shown in a free function, but this
could easily happen in a class as well.)

Code Exercise (3/3)

9

● Take a look at this pseudo code for
how one might implement this system

○ What problem(s) do you see?
○

So...with that said, let’s get
into a talk about software
design where we can
perhaps ‘fix’ this system.

My expectations and why this talk exists

10

● This talk is part of the Software Design Track at Cppcon
○ Part of this track Klaus and I (the co-chairs) thought would be good to have some ‘tutorial like’

or ‘more fundamental’ (i.e. like the back to the basics) talks on Design Patterns since 2021.
■ (Perhaps 1 or 2 talks like this a year--stay tuned and submit to future Cppcons!)

● So this probably is not an ‘expert-level’ talk, but aimed more at beginner level
C++ programmers

○ That said, I hope intermediate/experts will derive some value for looking at today’s pattern.
■ Or otherwise, be able to refresh and point out some tradeoffs with today’s pattern

● Design patterns talks in my opinion are about ‘trade-offs’ and are not 100%
solutions

○ They come up often enough, that it’s worth knowing some of the popular ones

Your Tour Guide for Today
by Mike Shah (he/him)

● Associate Teaching Professor at Northeastern University in
Boston, Massachusetts.

○ I teach courses in computer systems, computer graphics, and game
engine development.

○ My research in program analysis is related to performance building
static/dynamic analysis and software visualization tools.

● I do consulting and technical training on modern C++,
Concurrency, OpenGL, and Vulkan projects

○ (Usually graphics or games related)

● I like teaching, guitar, running, weight training, and anything
in computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

● Contact information and more on: www.mshah.io
● More online training at courses.mshah.io 11

http://www.mshah.io
http://courses.mshah.io

Code for the talk

Available here: https://github.com/MikeShah/Talks/tree/main/2022_cppcon_observer

12

https://github.com/MikeShah/Talks/tree/main/2022_cppcon_observer

Design Patterns
 ‘templates’ or ‘flexible blueprints’ for developing software.

13

What is a Design Pattern?

● A common repeatable solution for solving problems.
○ Thus, Design Patterns can serve as ‘templates’ or ‘flexible blueprints’ for developing software.

● Design patterns can help make programs more:
○ Flexible
○ Maintainable
○ Extensible
○ (A good pattern helps satisfy these criteria)

14

Design Patterns Book

● In 1994 a book came out collecting heavily used
patterns in industry titled “Design Patterns”

○ It had four authors, and is dubbed the “Gang of Four” book (GoF).
○ The book is popular enough to have it’s own wikipedia page:

https://en.wikipedia.org/wiki/Design_Patterns
○ C++ code samples included, but can be applied in many

languages.
○ This book is a good starting point on design patterns for

object-oriented programming

15
* See also the 1977 book “A Pattern Language: Towns, Buildings, Construction” by Christopher Alexander et al. where I believe the term design
pattern was coined.

https://en.wikipedia.org/wiki/Design_Patterns

Design Patterns Book * Brief Aside *

● In 1994 a book came out collecting heavily used
patterns in industry titled “Design Patterns”

○ It had four authors, and is dubbed the “Gang of Four” book (GoF).
○ It is popular enough to have a wikipedia page:

https://en.wikipedia.org/wiki/Design_Patterns
○ C++ code samples included, but can be applied in many

languages.
○ This is a good starting point on design patterns for object-oriented

programming

16

● I really enjoyed this book (as a graphics programmer) for
learning design patterns.

○ There’s a free web version here:
https://gameprogrammingpatterns.com/

○ I also bought a physical copy to keep on my desk
○ (I am not commissioned to tell you this :))

https://en.wikipedia.org/wiki/Design_Patterns
https://gameprogrammingpatterns.com/

● So design patterns are reusable
templates that can help us solve
problems that occur in software

○ One (of the many) nice thing the
Design Patterns Gang of Four
(GoF) book does is organize the
23* presented design patterns into
three categories:

■ Creational
■ Structural
■ Behavioral

17
*Keep in mind there are more than 23 design patterns in the world

Design Patterns
Book (1/2)

Design Patterns
Book (2/2)

● So design patterns are reusable
templates that can help us
solve problems that occur in
software

○ One (of the many) nice thing the
Design Patterns Gang of Four
(GoF) book does is organize the
23* presented design patterns into
three categories:

■ Creational
■ Structural
■ Behavioral

18
*Keep in mind there are more than 23 design patterns in the world

Today we are focusing on behavior of objects

I’ve highlighted the 11 behavioral patterns.

Behavioral Design Patterns (1/2)

● “Most of these design patterns are specifically concerned with
communication between objects.” [wiki]

19
https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

https://en.wikipedia.org/wiki/Design_Patterns#Behavioral
https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

Behavioral Design Patterns (2/2)

● “Most of these design patterns are specifically concerned with
communication between objects.” [wiki]

20
https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

The specific
pattern we’ll
look at today

https://en.wikipedia.org/wiki/Design_Patterns#Behavioral
https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

Model, View, Controller (MVC)

21

Model, View, Controller (MVC)

22

● The Model, View, Controller architecture fits quite
well with the ‘observer pattern’ we are going to
discuss

○ The idea is to separate the application into three main
components. [wiki]

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Model, View, Controller (MVC) - Example

23

● The ideal example for MVC would be for
something like a mouse-click event.

○ Click the mouse (Input, i.e. the controller)
○ Update some data in the model based on the mouse

click
○ Update the View based on the model

● A mouseclick could for instance activate several
‘functions’ to take place.

Observer Pattern

24

● “The observer pattern is a software design pattern in
which an object, named the subject, maintains a list of
its dependents, called observers, and notifies them
automatically of any state changes, usually by calling
one of their methods.” [wiki]

● So again, thinking about a simple example, we want to
be able to have a ‘mouse-click’ trigger 1 to many
events.

○ When the mouse clicks (our subject), a series of events are
triggered (by our observers)

https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Object_(computer_science)#Objects_in_object-oriented_programming
https://en.wikipedia.org/wiki/Method_(computer_science)
https://en.wikipedia.org/wiki/Observer_pattern

Observer Pattern
First Implementation

25

Quick Refresh: Object-Oriented Programming Toolbox

● One of our tools that we can utilize is
inheritance

○ This is a mechanism where we create an is-a
relationship between two types

■ The relationship is a parent-child relationship
■ (e.g., on right, we see that a ‘Dog’ is-an

‘Animal’
● Now, I can use the ‘is-a’ relationship to my

advantage and utilize polymorphism
○ (i.e., inheritance based polymorphism)

26https://cdn.programiz.com/sites/tutorial2program/files/cpp-inheritance.png

https://en.cppreference.com/book/intro/inheritance
https://cdn.programiz.com/sites/tutorial2program/files/cpp-inheritance.png

Observer Pattern 1st implementation

● I want to start with what is probably
the simplest version of an Observer
Pattern that I can think of.

○ We are going to have two classes
■ Subject - This is the ‘thing’ of

interest that we want to keep track
of any interesting state changes

■ Observer - These are the objects
we want to react based on the
subject

● A typical use case, is to have a
1-many relationship between
Subject and observer

○ (i.e. 1 subject, and at least 1 observer
watching that subject)

Observer 1

Observer 2

Observer 3

Subject 1
(I am
interesting)

27

Observer Pattern Class Names (and meanings)

● Subject (Sometimes also called “Publisher” or “Observable”)
○ ‘Subject’ or ‘observable’ is the ‘thing’ of interest.
○ Can also think of it as a ‘publisher’ because it will ‘notify’ of interesting events.

● Observer (Sometimes also called “Subscriber”)
○ ‘observer’ because it is waiting to be notified of something interesting
○ ‘subscriber’ you can think of as ‘I subscribe to Netflix and am notified on my app when a new

movie comes out)

28

Observer Pattern 1st implementation - Subject

● Here’s what the subject
looks like

○ Remember, the subject is the
‘interesting’ thing.

■ (e.g. a celebrity in
Hollywood is
interesting)

○ So that means we are adding
‘observers’ to it.

○ The Subjects responsibility is
to ‘Notify’ all of the observers
when something

29

Observer Pattern 1st implementation - Observer

● Here’s what the observer
looks like

○ The ‘OnNotify’ member
function is what we
implement.

○ This is the member function
called when the ‘Subject’
does something interesting.

30

Observer Pattern 1st implementation - Subject & Observer
Observer 1

Subject 1
(I am interesting)

Observer 2

Observer 3
● So this is effectively what we want to setup in our

system.
● Let’s go ahead and implement this (next slide)

31

Observer Pattern 1st implementation - Usage (1/3)

● Here’s the usage and output.
○ First we create our subject,

create some observers, and
then setup the 1 to many
relationship.

32

Observer Pattern 1st implementation - Usage (2/3)

● Here’s the usage and output.
○ ● Here we call ‘Notify’ on our

subject
● We see that all of the

‘observers’ perform an their
‘OnNotify’ action

33

Observer Pattern 1st implementation - Usage (3/3)

● Here’s the usage and output.
○ ● Now we modify our

observers for ‘subject’
○ And we see 2 of our

observers

34

Discussion of our First Try

35

1st implementation - Pros and Cons? (1/2)

● So, no design pattern is perfect, computer science is
about trade-offs.

○ (Question to the audience)
■ Is this pattern:

● Flexible
● Maintainable
● Extensible

36

1st implementation - Pros and Cons? (2/2)

● So, no design pattern is perfect, computer science is
about trade-offs.

○ (Question to the audience)
■ Is this pattern:

● Flexible - Not really as it stands
● Maintainable - Maybe?
● Extensible - Not really

● So we haven’t really done our job yet -- I’ve shown
you the ‘idea’ of a Subject with observers

○ Let’s enhance this a bit.

37

Observer Pattern - 2nd Try
Utilizing Interfaces

38

ISubject and IObserver Interfaces

https://www.bogotobogo.com/DesignPatterns/images/observer/observer_pattern.gif

ISubject IObserver

39

https://www.bogotobogo.com/DesignPatterns/images/observer/observer_pattern.gif

Observer Pattern 2nd
implementation - ISubject (1/2)

● We’ve modified our
‘Subject’ to now be
‘ISubject’

○ (next slide)

40

Observer Pattern 2nd
implementation - ISubject (2/2)

● We’ve modified our
‘Subject’ to now be
‘ISubject’

○ ISubject also will take in
‘IObserver’ (IObserver on
next slide), so that anything
like ‘SomeSubject’ can use
any IObservable

41

● We really want an
IObserver interface so
we can have any object
derive from this class.

● ‘Watcher’ is an example
that implements the
interface.

○ ‘Watcher’ can now
‘observer/subscribe/attach’ to
any subject.

Observer Pattern 2nd
implementation - IObserver

42

● Here’s the actual
implementation making use
of the derived classes.

○ This produces the same
result as before.

Observer Pattern 2nd
implementation - Usage

43

2nd implementation - Pros and Cons? (1/2)

● So, no design pattern is perfect, computer science is
about trade-offs.

○ (Question to the audience)
■ Is this pattern:

● Flexible
● Maintainable
● Extensible

44
Yes, I know you can’t
read this. You can
download and read this
later :)

2nd implementation - Pros and Cons? (2/2)

● So, no design pattern is perfect, computer science is
about trade-offs.

○ (Question to the audience)
■ Is this pattern:

● Flexible - Needs more power, not quite there yet
● Maintainable - More so, just need to keep the

interfaces abstract. Otherwise, changes are made in
derived classes mostly on the ‘Watcher’ end

● Extensible - Utilizing inheritance we can make use of
this pattern

● Okay, still more to do on the flexibility, and think in
particular the ‘subject’ needs more power.

45
Yes, I know you can’t
read this. You can
download and read this
later :)

Observer Pattern - 3rd Round
Making our ISubject more powerful

46

Observer Pattern 3rd - Improvements

● Sometimes we want to be a little more specific with the types of things we are
‘subscribing to’

○ i.e. Our observers should handle specific events, perhaps in specific subsystems

47

Design (1/3)

● Notice now that each of our
‘Observers’ could be part of a
system.

Observer 1

Sound System

Observer 2

Physics System

Observer 3

Log

Subject 1

48

Design (2/3)

● Notice now that each of our
‘Observers’ could be part of a
system.

○ That is to say, ‘Observer 1’ can be for
sounds

○ ‘Observer 2’ might be deriving from
some IObserver to handle Physics

○ ‘Observer 3’ for logging
○ etc.

Sound :
IObserver

Sound System

Physics :
IObserver

Physics System

Log :
IObserver

Log

Subject 1

49

Design (3/3)

● Notice now that each of our
‘Observers’ could be part of a
system.

○ That is to say, ‘Observer 1’ can be for
sounds

○ ‘Observer 2’ might be deriving from
some IObserver to handle Physics

○ ‘Observer 3’ for logging
○ etc.

● Notice: Subject 1 will be able to
‘store’ different types of observers
(Sound System, System Physics,
Log, etc.)

Sound :
IObserver

Sound System

Physics :
IObserver

Physics System

Log :
IObserver

Log

Subject 1

{Sound System,
Physics
System, Log}

50

Observer Pattern 3rd
implementation - ISubject
(1/2)

● So what we’re really doing now is making a ‘map’ within our ISubject interface

51

Observer Pattern 3rd
implementation - ISubject
(2/2)

● So what we’re really doing now is making a ‘map’ within our ISubject interface

Sound System
forward_list

Physics System
forward_list

Log
forward_listKeys

Next Sound
System event

52

Next Sound
System event

Log
forward_list

● The derived class from our ISubject, which in this case is ‘SomeSubject’ will
determine the Message Types.

○ Note: enum class > enum [See core guideline] (I’m being simple here)
○ Note: Instead of an enum, we could instead add some sort of ‘AddType’ member function and

use a different data structure to more dynamically handle this.

Observer Pattern 3rd implementation - ‘MessageTypes’

53

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-class

● So I’ll show you
how this
changes how
we add new
observers.

○ Each
‘message’ is
added to the
‘correct’ bucket
in our map

Observer Pattern 3rd implementation - Adding Specific Observers

54

● I’ve added the
ability to ‘NotifyAll()’

○ This iterates
through every
observer

● Notify now takes a
parameter to a
specific observer.

○ This time iterating
through the entire
map, or a specific
key in our map.

Observer Pattern 3rd implementation - Subject Notify

55

● Highlighted are two
examples of different
derived classes from
IObserver

○ These can further be
specialized to perform
an action or activate a
specific subsystem
within ‘OnNotify’

Observer Pattern 3rd implementation - Multiple Observers

56

● Now we can see the actual
‘usage’ of our observer.

○ Multiple types of observers
(SoundEvent, PhysicsEvent,
LogEvent) can subscribe(i.e.
observe) to a ‘subject’

● When something important
happens in our system, we can
NotifyAll() or Notify a specific
class of events.

Observer Pattern 3rd implementation - Usage (1/2)

57

● Now we can see the actual
‘usage’ of our observer.

○ Multiple types of observers
(SoundEvent, PhysicsEvent,
LogEvent) can subscribe(i.e.
observe) to a ‘subject’

● When something important
happens in our system, we can
NotifyAll() or Notify a specific
class of events.

Observer Pattern 3rd implementation - Usage (2/2)

58

3rd implementation - Pros and Cons? (1/2)

● So, no design pattern is perfect, computer science is
about trade-offs.

○ (Question to the audience)
■ Is this pattern:

● Flexible
● Maintainable
● Extensible

59
This one really does not
fit on our screen, see the
repo to see all of the
code!

3rd implementation - Pros and Cons? (2/2)

● So, no design pattern is perfect, computer science is
about trade-offs.

○ (Question to the audience)
■ Is this pattern:

● Flexible -
○ Yes (e.g. NotifyAll(), Notify(specific subsystem),

we can easily derive new IObserver classes)
● Maintainable -

○ Yes, the heavy lifting is abstracted to each
derivation of IObserver.

■ Subject just ‘iterates through’ the right set
of Observers.

● Extensible -
○ Yes, we showed this with the different types of

IObservers

60
This one really does not
fit on our screen, see the
repo to see all of the
code!

Is the pattern actually used?

61

Observer Pattern Usage

62

● I dug around for places that may be interesting for you to study usage of
Observer -- so here’s a few:

○ grep -irn “observer” .

Observer Pattern Usage

● Java !?!?
● Since JDK 1.0,

Java.util has had
observer because
the pattern is so
pervasive

● It may be worth just
looking at the API if
you’re building a
library

https://docs.oracle.com/javase/7/docs/api/java/util/Observer.html

63

https://docs.oracle.com/javase/7/docs/api/java/util/Observer.html

Observer Pattern Usage

● Godot engine
○ Now my understanding is their implementation actually uses a ‘signals’ and ‘slots’ version of

the observer pattern
○ https://docs.godotengine.org/en/3.1/getting_started/step_by_step/signals.html

64

https://docs.godotengine.org/en/3.1/getting_started/step_by_step/signals.html

Observer Pattern Usage

● Blender3D
○ https://github.com/blender/blender

65

https://github.com/blender/blender

Observer Pattern Usage

● Maya3D
○ https://download.autodesk.

com/us/maya/2009help/API
/_observer_8h-example.ht
ml

○ (2009) Little older example,
but was interesting to see
the implementation using
‘states’

66

https://download.autodesk.com/us/maya/2009help/API/_observer_8h-example.html
https://download.autodesk.com/us/maya/2009help/API/_observer_8h-example.html
https://download.autodesk.com/us/maya/2009help/API/_observer_8h-example.html
https://download.autodesk.com/us/maya/2009help/API/_observer_8h-example.html

Observer Pattern Usage

● Ogre3D (Graphics
Engine)

○ Neat study here using
cppdepend

○ https://www.cppdepend.co
m/ogre3d

■ Implements with a
‘listener’ object.

■ https://www.ogre3d.or
g/docs/api/1.8/class_
ogre_1_1_render_sys
tem_1_1_listener.htm
l

67

https://www.cppdepend.com/ogre3d
https://www.cppdepend.com/ogre3d
https://www.ogre3d.org/docs/api/1.8/class_ogre_1_1_render_system_1_1_listener.html
https://www.ogre3d.org/docs/api/1.8/class_ogre_1_1_render_system_1_1_listener.html
https://www.ogre3d.org/docs/api/1.8/class_ogre_1_1_render_system_1_1_listener.html
https://www.ogre3d.org/docs/api/1.8/class_ogre_1_1_render_system_1_1_listener.html
https://www.ogre3d.org/docs/api/1.8/class_ogre_1_1_render_system_1_1_listener.html

More Ideas on Observer Pattern

68

Some other *neat* ideas -

● Some C++ improvements
○ Replace raw pointers with smart_ptr’s

■ This can actually become very important as the observers may be part of different
subsystems that have to shutdown or restart.

○ As mentioned before, use enum class instead of enum
○ *I have an example3.cpp* in the repo showing this cleanup

● Consider using other data structures than std::forward_list
○ Observers may need to be ordered based on priority (i.e. use priority_queue)
○ Consider using ‘unordered_map’ instead of map as shown in my examples for

constant time average lookup.

69

Game Prog. Patterns Book

● Consider avoiding dynamic
memory allocation at runtime with a
fixed size of observers

○ Or otherwise consider a ‘linked’
implementation

■ See Game Programming patterns
Book

■ Notice Subject and Observer each
just store a pointer to the next
observer

70

Revisiting Angry Birds
A Summary of what we have learned

71

(Question for Audience) Thoughts? (1/2)

72

Physics Scoring

Bird Sounds

Maybe a ‘log’ created Maybe some ‘GameState’ keeping
track of progress

Animations

● I’m certain that the Observer pattern could
help us here.

○ But what do folks think about the ‘scaling’ in this
context?

(Question for Audience) Thoughts? (2/2)

73

Physics Scoring

Bird Sounds

Maybe a ‘log’ created Maybe some ‘GameState’ keeping
track of progress

Animations

● I’m certain that the Observer pattern could
help us here.

○ But what do folks think about the ‘scaling’ in this
context?

○ We do have a problem if too many events are
registered per object -- i.e. we have to iterate one at a
time through our objects.

■ Possible Solution: Push each event into some
queue, maybe handle that queue in another
thread or asynchronously depending on event
type

● Here’s a link to event queue if you can
totally decouple subject from observer.

● (Also may open up to threads more)
■ Possible Solution: Perhaps other models, e.g.

Actor Model [More]

https://gameprogrammingpatterns.com/event-queue.html
https://en.wikipedia.org/wiki/Actor_model

Conclusion
A Summary of what we have learned

74

Summary of what we have learned and should learn next

75

● We’ve built out the observer pattern from a very simple implementation to
something reasonably useable

● The observer pattern isn’t perfect, but it’s a good candidate for 1 to many
interactions.

○ The pattern is extensible, maintainable, and flexible -- there’s a reason it’s quite popular.
● There exist many variations of the observer pattern--so take a look at some

codebases to see different implementations

Going Further
Some things that may be useful for learning more design patterns

76

example3/main.cpp

77

● I’ve included in the repo a more modernized code using smart pointers and
usage of enum class

○ Used std::unordered_map instead of std::map (assume we don’t care about order)
○ I used shared_ptr<IObserver> instead of raw pointers

■ Note: You’ll need to think a bit about where you want the ownership to be (i.e. you could
possibly move ownership and use a unique_ptr instead)

■ Note: There will be some CoreCPP talk from 2022 talking about the dangers of
shared_ptr and performance.

Resources

● (Note: These are listed in the order that I would watch these)
● Game Programming Patterns part 7.1 - (Reading) Observer Pattern

○ https://www.youtube.com/watch?v=ryBEm0_5Y-g
● https://apibook.com/

○ Check out Martin Reddy’s book for another nice implementation
○ I learned a few tricks and extended the implementation.

● Tony Van Eerd: Thread-safe Observer Pattern - You're doing it wrong
○ https://www.youtube.com/watch?v=RVvVQpIy6zc

78

https://www.youtube.com/watch?v=ryBEm0_5Y-g
https://apibook.com/
https://www.youtube.com/watch?v=RVvVQpIy6zc

More General Design Patterns

79

● Videos
○ C++ Design Patterns: From C++03 to C++17 - Fedor Pikus - CppCon 2019

■ Overview of evolution of design patterns
○ Introduction to Design Patterns (Back to Basics Track CPPCON 2020)
○ The Factory Pattern (Software Design Track) - Mike Shah - CppCon 2021
○ And many more!

■ https://www.youtube.com/results?search_query=cppcon+design+patterns
● Books

○ API Design for C++
○ Game Programming Patterns
○ Modern C++ Design

https://www.youtube.com/watch?v=MdtYi0vvct0
https://www.youtube.com/watch?v=2UUqX2eIdSM
https://www.youtube.com/watch?v=4xrNtB60g0g
https://www.youtube.com/results?search_query=cppcon+design+patterns

16:45 - 17:45, Thur, 15th September 2022

60 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah

80

Thank you!

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

81

