oS

The Observer Design Pattern

Social: @MichaelShah 16:45 - 17:45, Thur, 15th September 2022
Web: mshah.io

Courses: courses.mshah.io

YouTube: 60 minutes | Introductory Audience
www . youtube.com/c/MikeShah

MIKE SHAH

Cppcon A/\

The C++ Conference September 12th-16th

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Abstract

Games, desktop software, phone apps, and almost every software that a user interacts with has
some sort of event handling system. In order to handle events, a common behavior design
pattern known as the 'observer pattern' allows one or more objects to monitor if a change of state
takes place in another object. In this talk, we are going to do a deep dive into the behavioral
design pattern known as the observer. The pattern utilizes a Subject and Observer (or publisher
and subscriber) model to notify when state has changed from the subject to one or more
observers in order to help make our software more maintainable, extensible, and flexible.

| will show some examples of the observer in modern C++ as well as real world use cases of
where observers are used for further study. Finally, I'll discuss the tradeoffs of the observer
pattern, and discuss which scenarios you may not actually want to use the observer pattern.
Attendees will leave this talk with the knowledge to go forward and implement the observer

pattern, as well as how to spot the observer design pattern in projects they may already be
working on!

Please do not redistribute slides without prior
permission.

Exercise (1/3) . SCORE?

e Let'stake alook at a
sample program.

e \What types of
‘events’ do you see?

e (Or another way to
state, what
subsystems are
involved)

https://downloadcentral.dk/upload/datas/hvorforsucces.gif

Physics Scoring

Exercise (2/3) _ Stcrea60

e |et'stake alook at a e
sample program. Bird Sounds -
e \What types of
‘events’ do you see?
e (Oranother way to

state, what
subsystems are
involved)
Animations
Maybe a ‘log’ created Maybe some ‘GameState’ keeping track of
pmgrpqq

We have witnessed one action
(bird collision or bird slingshot)
taking place, and many
subsystems/events that respond.

2 void BirdSlingshot(){

COde ExerCise (1/3) SimulateBirdPhysics(...)

if(CheckCollisions()){

e Take a look at this pseudo code for PlaySoundBirdNoise()

how one might implement this system if(Hlthgbiegt Pig){
o What problem(s) do you see? pdateScore();
PlayPigSound() ;

SimulateObjectPhysics(pig)
}

LogResult();

Besides the deep nesting, and perhaps
complicated logic-- what | notice is how
‘coupled’ this code is.

(This is shown in a free function, but this
could easily happen in a class as well.)

void BirdSlingshot(){

SimulateBirdPhysics(...)

if(CheckCollisions()){
PlaySoundBirdNoise()

if(HitObject Pig){
UpdateScore();

PlayPigSound() ;

SimulateObjectPhysics(pig)
}

LogResult();

So...with that said, let’s get
into a talk about software
design where we can
perhaps ‘fix’ this system.

void BirdSlingshot(){

SimulateBirdPhysics(...)

if(CheckCollisions()){
PlaySoundBirdNoise()

if(HitObject Pig){
UpdateScore();

PlayPigSound() ;

SimulateObjectPhysics(pig)
}

LogResult();

My expectations and why this talk exists

e This talk is part of the Software Design Track at Cppcon

o Part of this track Klaus and | (the co-chairs) thought would be good to have some ‘tutorial like
or ‘more fundamental’ (i.e. like the back to the basics) talks on Design Patterns since 2021.
m (Perhaps 1 or 2 talks like this a year--stay tuned and submit to future Cppcons!)

e So this probably is not an ‘expert-level talk, but aimed more at beginner level
C++ programmers

o That said, | hope intermediate/experts will derive some value for looking at today’s pattern.
m Orotherwise, be able to refresh and point out some tradeoffs with today’s pattern

e Design patterns talks in my opinion are about ‘trade-offs’ and are not 100%

solutions
o They come up often enough, that it's worth knowing some of the popular ones

10

Your Tour Guide for Today

by Mike Shah (he/him)

Associate Teaching Professor at Northeastern University in

Boston, Massachusetts.
o | teach courses in computer systems, computer graphics, and game
engine development.
o My research in program analysis is related to performance building
static/dynamic analysis and software visualization tools.

| do consulting and technical training on modern C++,

Concurrency, OpenGL, and Vulkan projects
o (Usually graphics or games related)

| like teaching, guitar, running, weight training, and anything
in computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

Contact information and more on: www.mshah.io

More online training at

1

http://www.mshah.io
http://courses.mshah.io

Code for the talk

Available here: https://qgithub.com/MikeShah/Talks/tree/main/2022 cppcon observer

H MikeShah/Talks Pubiic

¢> Code (%) Issues {9 Pullrequests () Actions [Projects

¥ main v Talks/2022 cppcon_observer/

e MikeShah Create README.md

(Y README.md

https://github.com/MikeShah/Talks/tree/main/2022_cppcon_observer

Design Patterns
with C++

B

Design Patterns

‘templates’ or ‘flexible blueprints’ for developing software.

Patterns

What is a Design Pattern?

e A common repeatable solution for solving problems.
o Thus, Design Patterns can serve as ‘templates’ or ‘flexible blueprints’ for developing software.

e Design patterns can help make programs more:
Flexible

Maintainable

Extensible

(A good pattern helps satisfy these criteria)

O O O O

14

Design Patterns Book

e In 1994 a book came out collecting heavily used
patterns in industry titled “Design Patterns”

o It had four authors, and is dubbed the “Gang of Four” book (GoF).

o The book is popular enough to have it's own wikipedia page:
https://en.wikipedia.org/wiki/Design_Patterns

o C++ code samples included, but can be applied in many
languages.

o This book is a good starting point on design patterns for
object-oriented programming

1. %)- v 1
Desion Patterns
Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm

Ralph Johnson
John Vlissides

oy

~
>
(=)
=,
g
A
O
z
-
=
=
4
<
=
-4
=
m
o
=
Z
z
Q
z
o
=]
Z
(3]
)
™
=
m
w

15

https://en.wikipedia.org/wiki/Design_Patterns

* Brief Aside *

| really enjoyed this book (as a graphics programmer) for
learning design patterns.
o There's a free web version here:

https://gameprogrammingpatterns.com/
o | also bought a physical copy to keep on my desk

o (I'am not commissioned to tell you this :))

Patterns

Robert Nystrom

16

https://en.wikipedia.org/wiki/Design_Patterns
https://gameprogrammingpatterns.com/

Design Patterns
Book (1/2)

e So design patterns are reusable
templates that can help us solve

problems that occur in software

o One (of the many) nice thing the
Design Patterns Gang of Four
(GoF) book does is organize the
23* presented design patterns into
three categories:

m Creational
m Structural
m Behavioral

g _Momento
Design Patterns g [Proxy |
saving state Adapter

Elements of Reusable
of iteration

Object-Oriented Software
-Builder \\)
= avoiding -
criating ks hysteresis
composites enumerating \\
— adding children N
) responsibiliies Vg e NvORC X
pobecs N\ /X ? - Command_|
/ Composite |+ - —
sharing N d\ﬁ) e defini
composites efining ining
pi N traversals the chain_
adding A N
Flyweight operation o
changing skin defining Visitor]
versus guts S SraraImer; |
// i
sharing addlng
strategies/ Interpreter SOpIERBiionS:
eaies sharing : | Chain of Responsibility ‘
sharing terminal
complex

v states symbols™
| : ’#We\
‘defining

o gl T late Method
steps > emplate Nethod) often uses

Today we are focusing on behavior of objects

I've highlighted the 11 behavioral patterns.

*Keep in mind there are more than 23 design patterns in the world Design pattern relationships

Behavioral Design Patterns (1/2)

e “Most of these design patterns are specifically concerned with
communication between objects.” [wiki]

Behavioral [edit]
Most of these design patterns are specifically concerned with communication between objects.

« Chain of responsibility delegates commands to a chain of processing objects.

« Command creates objects that encapsulate actions and parameters.

« Interpreter implements a specialized language.

« |terator accesses the elements of an object sequentially without exposing its underlying representation.

« Mediator allows loose coupling between classes by being the only class that has detailed knowledge of their methods.

* Memento provides the ability to restore an object to its previous state (undo).

« Observer is a publish/subscribe pattern, which allows a number of observer objects to see an event.

« State allows an object to alter its behavior when its internal state changes.

« Strategy allows one of a family of algorithms to be selected on-the-fly at runtime.

« Template method defines the skeleton of an algorithm as an abstract class, allowing its subclasses to provide concrete behavior.
« Visitor separates an algorithm from an object structure by moving the hierarchy of methods into one object.

https://en.wikipedia.ora/wiki/Design_Patterns#Patterns_by_type

Creational |edit)

Main article: Creational pattern

Creational patterns are ones that create

Abstract factory groups object facto
Builder constructs complex objects

Factory method creates objects witl
Prototype creates objects by cloning
Singleton restricts object creation fa

Structural | edit]

These concern class and object compo

Adapter allows classes with incomp
Bridge decouples an abstraction fro
Composite composes zero-or-more
Decorator dynamically adds/overrid
Facade provides a simplified interfa
Flyweight reduces the cost of creati
Proxy provides a placeholder for an

Behavioral |edit]

Most of these design patterns are spe

Chain of responsibility delegates c
Command creates objects which e
Interpreter implements a specializ
lterator accesses the elements of

Mediator allows loose coupling be
Memento provides the ability to re
Observer is a publish/subscribe pa
State allows an object to alter its
Strategy allows one of a family of
Template method defines the ske
Visitor separates an algorithm fro

https://en.wikipedia.org/wiki/Design_Patterns#Behavioral
https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

The specific

Behavioral [edit]

attern we’ll
Most of these design patterns are specifically concerned with communication between object p
« Chain of responsibility delegates commands to a chain of processing objects. I O O k at t O d ay

« Command creates objects that encapsulate actions and parameters.
« Interpreter implements a specialized language.

« |terator accesses the elements of an object sequentially without exposing its underlying represeg
« Mediator allows loose coupling between classes by being the only class that has detailed kngl##tje of their methods.
» Memento provides the ability to restore an object to its previous state (undo).
I: Observer is a publish/subscribe pattern, which allows a number of observer objects to see an event.
« State allows an object to alter its behavior when its internal state changes.

« Strategy allows one of a family of algorithms to be selected on-the-fly at runtime.

« Template method defines the skeleton of an algorithm as an abstract class, allowing its subclasses to provide concrete behavior.
« Visitor separates an algorithm from an object structure by moving the hierarchy of methods into one object.

https://en.wikipedia.ora/wiki/Design_Patterns#Patterns_by_type

20

https://en.wikipedia.org/wiki/Design_Patterns#Behavioral
https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

Model, View, Controller (MVC)

Model, View, Controller (MVC)

e The Model, View, Controller architecture fits quite
well with the ‘observer pattern’ we are going to

discuss

o The idea is to separate the application into three main
components. [wiki]

Model

independent of the user interface.l14] It directly manages the data, logic and rules
of the application.

View
Any representation of information such as a chart, diagram or table. Multiple views
of the same information are possible, such as a bar chart for management and a
tabular view for accountants.

Controller
Accepts input and converts it to commands for the model or view.[1]

The central component of the pattern. It is the application's dynamic data structure,

T

UPDATES MANIPULATES
VIEW CONTROLLER
\ /
% &
3 o"’
N\ /
USER

22

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Model, View, Controller (MVC) - Example

e The ideal example for MVC would be for

something like a mouse-click event.
o Click the mouse (Input, i.e. the controller)

o Update some data in the model based on the mouse
click

o Update the View based on the model
e A mouseclick could for instance activate several
‘functions’ to take place.

@ ColorButton

Click me

Change color

= |

23

Observer Pattern

“The observer pattern is a software design pattern in
which an object, named the subject, maintains a list of
its dependents, called observers, and notifies them
automatically of any state changes, usually by calling
one of their methods.” [wiki]

So again, thinking about a simple example, we want to
be able to have a ‘mouse-click’ trigger 1 to many

events.
o When the mouse clicks (our subject), a series of events are
triggered (by our observers)

@ ColorButton

Click me

Change color

=y

o\ !
ULJD'

UPDATES

1

D

MANIPULATES

VIEW CONTROLLER
\ /
) &
By \)(9
\ /

24

https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Object_(computer_science)#Objects_in_object-oriented_programming
https://en.wikipedia.org/wiki/Method_(computer_science)
https://en.wikipedia.org/wiki/Observer_pattern

Observer Pattern

First Implementation

25

Quick Refresh: Object-Oriented Programming Toolbox

e One of our tools that we can utilize is

inheritance
o This is a mechanism where we create an is-a
relationship between two types
m The relationship is a parent-child relationship
m (e.g., onright, we see that a ‘Dog’ is-an
‘Animal’
e Now, | can use the ‘is-a’ relationship to my

advantage and utilize polymorphism
o (i.e., inheritance based polymorphism)

Base
Class

Derived
Class

Animal

https://en.cppreference.com/book/intro/inheritance
https://cdn.programiz.com/sites/tutorial2program/files/cpp-inheritance.png

Observer Pattern 15t implementation

e | want to start with what is probably
the simplest version of an Observer
Pattern that | can think of.

o We are going to have two classes
m Subject - This is the ‘thing’ of
interest that we want to keep track
of any interesting state changes
m Observer - These are the objects
we want to react based on the
subject

e Altypical use case, is to have a
1-many relationship between

Subject and observer
o (i.e. 1 subject, and at least 1 observer
watching that subject)

Observer 1

Observer 2

Subject 1
(Iam
interesting)

Observer 3

27

Observer Pattern Class Names (and meanings)

e Subject (Sometimes also called “Publisher” or “Observable”)

o ‘Subject’ or ‘observable’ is the ‘thing’ of interest.

o Can also think of it as a ‘publisher’ because it will ‘notify’ of interesting events.
e Observer (Sometimes also called “Subscriber”)

o ‘observer’ because it is waiting to be notified of something interesting

o ‘subscriber’ you can think of as ‘I subscribe to Netflix and am notified on my app when a new
movie comes out)

28

Observer Pattern 15t implementation - Subject

e Here's what the subject 28 class Subjeck!
looks like public:
L 22 void AddObserver(Observer* observer){
© Remember, the subject is the 23 mObservers.push front(observer);
‘interesting’ thing. 2! }

m (e.g. acelebrity in
Hollywood is
interesting) 28 }

o So that means we are adding '
‘observers’ to it.

o The Subjects responsibility is
to ‘Notify’ all of the observers
when something

void RemoveObserver(Observer* observer){
mObservers. remove(observer);

void Notify(){
for(auto& o: mObservers){

N

0->0nNotify();
}

w w w W

}

U B5 W

W

private:
std::forward list<Observer*> mObservers;

] €3

JoWw W
(@)}

w
(00)

Observer Pattern 1%t implementation - Observer

e Here’s what the observer

looks like
o The ‘OnNotify’ member
function is what we
implement.
o This is the member function
called when the ‘Subject’
does something interesting.

} class Observer{

public:
Observer(std::string name)

}

soid OnNotify(){

std::cout << mName <<

}

nrivatas
private:

std::string mName;

: mName (name) {

30

Observer Pattern 18t implementation - Subject & Observer

Observer(std::string name) : mName(name){

} ‘ subject{ SUbjeCt 1

(I am interesting)

OgMﬁifYU{ o sendL 22 ’ AddObserver(Observer* observer){
} SEGSEAUL <o TiaND << << std: ZendL; 23 mObservers.push front(observer);
: std ::string mName;
RemoveObserver(Observer* observer){
mObservers. remove (observer) ;

Qbsgljver{ Observer 2

Obéerver(std: :string name) : mName(name){ 30 v VNOtifY(){
¥ 3] or(& o: mObservers){
o A > 1 ;
onNotify(){ o a->0pNOLLINL)
std::cout << mName << << std::endl; 3 }
} 34 ¥
' std :string mName;

std::forward list<Observer*> mObservers;

server Ob 3
publE e So this is effectively what we want to setup in our

Observer(std::string name) : mName(name){

} system.
onNotify (){ e Let's go ahead and implement this (next slide)

std::cout << mName << << std::endl;

:

 std: :string mName;

Observer Pattern 1%t implementation - Usage (1/3)

e Here’s the usage and output.

(@)

First we create our subject, ' Subject subject;

create some observers, and Observer observerl(;

then setup the 1 to man Observer observer2(.
: P y Observer observer3() &

relationship.

subject.AddObserver(&observerl) ;
subject.AddObserver(&observer2);
subject.AddObserver(&observer3);

U

subject.Notify();

[
J
=
~
-~
5
=
D

3

1
5
<
<
4
E
-
[~

std::cout << std::endl;
subject.RemoveObserver(&observerl);

Ur OO
O

o0

subject.Notify();

(o))

v{:‘.f\'}‘i“i .
- Lull ’

= O W

(@)

Observer Pattern 1%t implementation - Usage (2/3)

2 int main(){

e Here we call ‘Notify’ on our 42 Subject subject;
subject 4! Observer observerl(i
e \We see that all of the : Observer observer2(:
: Observer observer3() &

‘observers’ perform an their

‘OnNotify’ action C subject.AddObserver(&observerl);
subject.AddObserver(&observer2);

subject.AddObserver(&observer3)

mike:example0$ g++ -g main.cpp -0 prog subject.Notify();

mike:example0$./prog
observer3-hello!
observer2-hello!

on Ot O ¢

O Es WN

std::cout << std::endl;
subject.RemoveObserver(&observerl);

00

observerl-hello!

subject.Notify();

return 0;

OO On O n

- O O

Observer Pattern 1%t implementation - Usage (3/3)

2 int main(){

e Now we modify our 44 Subject subject;
observers for ‘subject’ A! Observer observerl(;
o And we see 2 of our : Observer observer2(:
: Observer observer3() &
observers

subject.AddObserver(&observerl) ;
subject.AddObserver(&observer2);
subject.AddObserver(&observer3);

mike:example0$ g++ -g main.cpp -0 prog subject.Notify();

mike:example0$./prog
observer3-hello!
observer2-hello!
observerl-hello!

observer3-hello!
observer2-hello!

on Ot O ¢

O Es WN

std::cout << std::endl;
subject.RemoveObserver(&observerl);

00

subject.Notify();

OO On O n

- O O

Discussion of our First Try

Opserver{

18t implementation - Pros and Cons? (1/2) it

OonNotify(){
std::cout << mName << << std::endl;

1

std::string mName;

e S0, no design pattern is perfect, computer science is _
abOUt trade-OﬁS' S‘Ubj?(tl{xddobserver(Observer" observer){
o () V . mObservers.push_front(observer);
[Is this pattern: X VSEE‘ZZE‘Q?ZEFZiSSZ?ZEQZ?ier‘JbS”V”’{
e Flexible ,. Notify(){

(& 0: mObservers){
e Maintainable

0->0nNotify();
. }
e Extensible

std::forward_list<Observer*> mObservers;

t main(){

Subject subject;

Observer observeri(¥z
Observer observer2()z
Observer observer3(b H

subject.AddObserver(&observer1);
subject.AddObserver(&observer2);
subject.AddObserver(&observer3);
subject.Notify();

std::cout << std::endl;
subject.RemoveObserver(&observeril);

subject.Notify();

Opserver{

18t implementation - Pros and Cons? (2/2) et

OonNotify(){
std::cout << mName << << std::endl;

1

std::string mName;

e S0, no design pattern is perfect, computer science is _
abOUt trade-OﬁS. S‘Ubj?(tl{xddobserver(Observer" observer){
o () 77 i mObservers.push_front(observer);
m s this pattern: : nbservers. remme(chesrve)y "
e Flexible - ,. Notify(){

(auto& o: mObservers){
e Maintainable -

0->0nNotify();
. }
e Extensible -

std::forward_list<Observer*> mObservers;

t main(){

Subject subject;

Observer observeri(¥z
Observer observer2()z
Observer observer3(b H

subject.AddObserver(&observer1);
subject.AddObserver(&observer2);
subject.AddObserver(&observer3);
subject.Notify();

std::cout << std::endl;
subject.RemoveObserver(&observeril);

subject.Notify();

Observer Pattern - 2nd Try

Utilizing Interfaces

38

ISubject and |0bserver Interfaces

ISubject observers ..J IObserver
Attach{Observer) Updale{)
Detach(Observer) 2

, for ali 0 in observers |
Notify) o-----1 --| o->Update() 2}

A ConcreteObserver

ConcreteSubject L‘ Sooed Update{) ==
GetState() ©---F-1 " observerState

SetState()

subjectState

retum subjectState

T~
__ 1 observerState =
subject->GetState()

https://www.bogotobogo.com/DesignPatterns/images/observer/observer pattern.qif

39

https://www.bogotobogo.com/DesignPatterns/images/observer/observer_pattern.gif

Observer Pattern 2"
implementation - ISubject .

e \We've modified our
‘Subject’ to now be
‘ISubject’

o (nextslide)

SSW W Wwwwwwww wN
— < 5 L T » -

Ur O U
f

Ur O
P e)

lass ISub]ect{

s SomeSubject : publi

) ISub]ect() };
virtual ~ISubject() {}

id AddObserver(IObserver* observer){
mObservers.push front(observer);

}
| id RemoveObserver(IObserver* observer){
mObservers remove(observer) ;
}
ua id Notify(){
for(auto& o: mObservers){
0->0nNotify();
}
}

std::forward list<IObserver*> mObservers;

c ISubject{

Observer Pattern 2"
implementation - ISubject e

e \We've modified our
‘Subject’ to now be
‘ISubject’

o ISubject also will take in
‘IObserver’ (I0bserver on
next slide), so that anything
like ‘SomeSubject’ can use
any IObservable

Ur ot n

(9]

SSW W Wwwwwwww wN
— n - T N i

s SomeSubject : publi

) ISub]ect() };
virtual ~ISubject() {}

id Addobserver(IObserver*|observer){

mObservers.push front(observer);

}
U id RemoveObserver(IObserver* observer){
mObservers remove(observer) ;
}
ua id Notify(){
for(auto& o: mObservers){
0->0nNotify();
}
}

std::forward list<IObserver*> mObservers;

c ISubject{

Observer Pattern 2"
implementation - |[Observer

e We really want an

] I0bserver{
IObserver interface so public:
. 11 sirtual ~IObserver() {}
we can have any object /irtual void OnNotify()=0;
derive from this class. 14
® ‘WatCher, iS an example lass Watcher : public IObsérver{
that implements the L t Watcher(t std::string& name) : mName(name){

interface. - !
o ‘Watcher’ can now 21 /01d OnNotify(){

‘observer/subscribe/attach’ to [) Std::cout << mName << <stasendty

any subject. :

std::string mName;

42

Observer Pattern 2™
Implementation - Usage

main(){

SomeSubject subject;
Watcher watcherl(

e Here’s the actual 65 Watcher watcher2(.
implementation making use Watcher watChers\)i
of the derived classes. 68 subject.AddObserver(&watcherl);

o This produces the same 69 subject.AddObserver(&watcher2);
result as before. 70 subject.AddObserver(&watcher3);

subject.Notify();

std::cout << std::endl;
subject.RemoveObserver(&watcherl);

subject.Notify();

2" implementation - Pros and Cons? (1/2

Watcher :

Watche
3

e So, no design pattern is perfect, computer science is T
about trade-offs.
o)

m s this pattern:
e Flexible
e Maintainable
e Extensible

I0bserver*> mObse

SomeSubject : ISubject{

main(){

SomeSubj

Watcher

Watcher watcher
watcher3(

subject.A
subject.

Yes, | know you can't

read this. You can

download and read this subject.Notif
later :)

2" implementation - Pros and Cons? (2/2)

e S0, no design pattern is perfect, computer science is

about trade-offs.
o)
m s this pattern:

e Flexible - Needs more power, not quite there yet

e Maintainable - More so, just need to keep the
interfaces abstract. Otherwise, changes are made in
derived classes mostly on the ‘Watcher’ end

e Extensible - Utilizing inheritance we can make use of
this pattern

Yes, | know you can't
read this. You can
download and read this
later :)

Observer Pattern - 3" Round

Making our ISubject more powerful

46

Observer Pattern 3™ - Improvements

e Sometimes we want to be a little more specific with the types of things we are

‘subscribing to’
o i.e. Our observers should handle specific events, perhaps in specific subsystems

47

Design (1/3)

Notice now that each of our
‘Observers’ could be part of a
system.

Observer 1

Sound System

Observer 2

Physics System

Subject 1

Observer 3

Log

48

Design (2/3)

e Notice now that each of our
‘Observers’ could be part of a

system.
o Thatis to say, ‘Observer 1’ can be for
sounds

o ‘Observer 2’ might be deriving from
some |Observer to handle Physics

o ‘Observer 3’ for logging

o etc.

Sound
IObserver

Sound System

Physics :
IObserver

Physics System

Subject 1

Log
IObserver

Log

49

Design (3/3)

e Notice now that each of our
‘Observers’ could be part of a

system.

o Thatis to say, ‘Observer 1’ can be for
sounds

o ‘Observer 2’ might be deriving from
some |Observer to handle Physics

o ‘Observer 3’ for logging

o etc.

e Notice: Subject 1 will be able to
‘store’ different types of observers
(Sound System, System Physics,
Log, etc.)

Sound
IObserver

Sound System

Physics :
IObserver

Physics System

Subject 1

{Sound System,
Physics
System, Log}

Log :
IObserver

Log

50

Observer Pattern 3™
implementation - ISubject

e So what we're really doing now is making a ‘map’ within our ISubject interface

155 ISubject{

f std::forward list<IObserver*> ObserverslList;

f std::map<int, ObserversList> ObserversMap;
ObserversMap mObservers;

Sound System | Physics System | Log
forward_list forward_list forward_list

Next Sound Log
System event forward_list

Next Sound
System event

std::forward list<IObserver*> ObserversList;

std: :map< , ObserverslList> ObserversMap;
ObserversMap mObservers;

Observer Pattern 3@ implementation - ‘MessageTypes’

e The derived class from our ISubject, which in this case is ‘SomeSubject’ will

determine the Message Types.
o Note: enum class > enum [See core guideline] (I'm being simple here)
o Note: Instead of an enum, we could instead add some sort of ‘AddType’ member function and
use a different data structure to more dynamically handle this.

SomeSubject : public ISubject{

MessageTypes{PLAYSOUND, HANDLEPHYSICS, LOG};

53

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-class

Observer Pattern 3™ implementation - Adding Specific Observers

e So I'll show you

how this 45 Lrt /0id AddObserver(int message, IObserver* observer){
Changes how suto it = mObservers.find(message);
4¢ 1T (it==mObservers.end()){
we add new
observers. mObservers[message] = ObserversList();
o Each }
‘message’ is 2

mObservers[message].push front(observer);

added to the
‘correct’ bucket
in our map

54

Observer Pattern 3" implementation - Subject Notify

e [|'ve added the

- . . 107 id NotifyAll(){

ablllty to NOtIfyA”() Tos (Ob Map::iterator it = mOb begin(); it!=mOb d() t){

. . 10% serversMap: :iterator it = mObservers.begin(); it!=mObservers.en ; HH
o ;ths |tehrates for(a O&Noigfm(()k)aservers[it»first]){ :
rough every 0->0nNotify();
observer BE } :
e Notify now takes a [
Vi soid Notify(int){
parameter tO a 117 for(auto& g:lm%bservne]?z?:\gisage]){
specific observer. [p T RC R

o This time iterating
through the entire
map, or a specific
key in our map.

55

Observer Pattern 3™ implementation - Multiple Observers

Highlighted are two
examples of different
derived classes from

|Observer
o These can further be
specialized to perform
an action or activate a
specific subsystem
within ‘OnNotify’

s SoundEvent : public IObserver{

t SoundEvent (L std::string& name) : mName(name){

o

id OnNotify(){
std::cout << mName << << std::endl;
}

std::string GetName()

std::string mName;

lass PhysicsEvent : public IObserver{

t PhysicsEvent(const std::string& name) : mName(name){

)

s0id OnNotify(){

std::cout << mName << << std::endl

}
std::string GetName()

std::string mName;

Observer Pattern 3" implementation - Usage (1/2)

Now we can see the actual

‘usage’ of our observer.

o Multiple types of observers
(SoundEvent, PhysicsEvent,
LogEvent) can subscribe(i.e.
observe) to a ‘subject’

When something important
happens in our system, we can
NotifyAll() or Notify a specific
class of events.

main(){

SomeSubject subject;

SoundEvent watcherl();
PhysicsEvent watcher2():
LogEvent watcher3()s

subject.AddObserver(SomeSubject: :PLAYSOUND, &watcherl);
subject.AddObserver(SomeSubject: :HANDLEPHYSICS, &watcher2);
subject.AddObserver(SomeSubject: :L0G, &watcher3);

subject.NotifyAll();

subject.Notify(SomeSubject: :PLAYSOUND) ;
std::cout << std::endl;
subject.RemoveObserver(SomeSubject: :PLAYSOUND, &watcherl);

subject.Notify(SomeSubject: :PLAYSOUND) ;

mike:example2$ g++ -g main.cpp -0 prog

watcher2 physics engine did something
watcher3 log did something
watcherl Sound engine did something

Goodbye watcherl

main(){

SomeSubject subject;

SoundEvent watcherl();
PhysicsEvent watcher2():
LogEvent watcher3()s

subject.AddObserver(SomeSubject: :PLAYSOUND,

subject.AddObserver(SomeSubject: :HANDLEPHYSICS,

subject.AddObserver(SomeSubject: :L0G,

subject.NotifyAll();

subject.Notify(SomeSubject: :PLAYSOUND) ;
std::cout << std::endl;

&watcherl);
&watcher2);
&watcher3);

subject.RemoveObserver(SomeSubject: :PLAYSOUND, &watcherl);

subject.Notify(SomeSubject: :PLAYSOUND) ;

3" implementation - Pros and Cons? (1/2)

e S0, no design pattern is perfect, computer science is

about trade-offs.
o ()
m s this pattern:
e Flexible
e Maintainable
e Extensible

3" implementation - Pros and Cons? (2/2)

e S0, no design pattern is perfect, computer science is
about trade-offs.
o |)
m s this pattern:
e Flexible -
o Yes (e.g. NotifyAll(), Notify(specific subsystem),
we can easily derive new IObserver classes)
e Maintainable -
o Yes, the heavy lifting is abstracted to each
derivation of IObserver.
m Subject just ‘iterates through’ the right set
of Observers.
e Extensible -
o Yes, we showed this with the different types of
|Observers

This one really does not
fit on our screen, see the
repo to see all of the
code!

Is the pattern actually used?

Observer Pattern Usage

e | dug around for places that may be interesting for you to study usage of

Observer -- so here’s a few:
o grep -irn “observer” .

62

Observer Pattern Usage

e Javal?1? java.util
e Since JDK 1.0 Interface Observer
Java.util has had
observer because public interface Observer
th tt . A class can implement the Observer interface when it wants to be informed of changes in observable objects.
e pa .ern IS SO .
pervasive D
o It may be worth just See Also:
: . Observabl
looking at the API if i

you're building a
library

https://docs.oracle.com/javase/7/docs/api/java/util/Observer.html

https://docs.oracle.com/javase/7/docs/api/java/util/Observer.html

Observer Pattern Usage

e (Godot engine

o Now my understanding is their implementation actually uses a ‘signals’ and ‘slots’ version of
the observer pattern

o https://docs.qodotengine.org/en/3.1/getting _started/step by step/signals.html

finishobserving];
=Ny
g % 2 ¢ {
[startProcessing];
@interface JoypadIOS Q)
add self
add self
[[NSNotificationCenter defaultCenter] remove self];
CFRunLoop ef pre_wait_

static void pre_wait_ cb(CFRunLoop ef p_ CFRunLoopActivity p_activiy, void *p_context);

CFStringRef name, const

void DisplayServerMacOS::_keyboard_layout_changed(CFNotificationCenterRef center, void *

ct, CFDictionaryRef user_info) {

CFNotificationCenterAdd CFNotificationCenterGetDistributedCenter(),

43 CFNotificationCenterRemove CFNotificationCenterGetDistributedCenter(), nullptr, kTISNotifySelectedKeyboardI
anged, nullptr);

void 0S_MacOS::pre_wait_ cb(CFRunLoop ef p_ CFRunLoopActivity p_activiy, void *p_context) {
pre_wait_ = CFRunLoop reate(kCFAllocatorDefault, kCFRunLoopBeforeWaiting, true, 0, &pre_wait_
CFRunLoopAdd CFRunLoopGetCurrent(), pre_wait_ kCFRunLoopCommonModes) ;
CFRunLoopRemove CFRunLoopGetCurrent(), pre_wait_ kCFRunLoopCommonModes) ;
CFRelease(pre_wait_ g

static void _keyboard_layout_changed(CFNotificationCenterRef center, void *

cb, nullptr);

CFStringRef name, const void *c

https://docs.godotengine.org/en/3.1/getting_started/step_by_step/signals.html

Observer Pattern Usage

e Blender3D
o https://qithub.com/blender/blender

// \brief Base is the base class for the S
/] Base is the abstract base class for the S.
// The interface contains some pure virtual functions
// The build() and clear() members are to notify the
class Base {
// Default constructor for Base.
Base() : _notifier(0) {}
// \brief Constructor which attach the into notifier.
// Constructor which attach the into notifier.
Base(AlterationNotifier& nf) {
// the other is attached to.
Base(const Base& copy) {
virtual ~ Base() {
// \brief Attaches the into an AlterationNotifier.
// This member attaches the into an AlterationNotifier.
// \brief Detaches the into an AlterationNotifier.
// This member detaches the from an AlterationNotifier.
// Gives back true when the is attached into a notifier.
Base& operator=(const Base& copy);
typename std::list< Base*>::iterator _index;
// \brief The member function to notificate the about an
// The add() member function notificates the about an item
// \brief The member function to notificate the about

// The add() member function notificates the about more item

https://github.com/blender/blender

Observer Pattern Usage

Maya3D

(@)

https://download.autodesk.
com/us/maya/2009help/API

/_observer_8h-example.ht
ml

(2009) Little older example,
but was interesting to see
the implementation using
‘states’

7

/7

class stateObserver : TObserverx {
public:

stateObserver() : m_state(NULL), m bs(NULL), m_ds(NULL), m_ss(NULL), m_ps(NULL), m_as(NULL), m_cs(NULL), m_fs(NULL), m_ptS(NULL) {};

~stateObserver() {};

//these are the interface functions used by Ashli

void setLightState(LightState state, int handle, const char* value);

void setMaterialState(MaterialState state, int handle, const char* value);

void setVertexRenderState(VertexRenderState state, int handle, const char* value);
void setPixelRenderState(PixelRenderState state, int handle, const char* value);
void setSamplerState(SamplerState state, int handle, const char* value);

void setVertexShaderState(VertexShaderState state, int handle, const char* value);
void setPixelShaderState(PixelShaderState state, int handle, const char* value);
void setTextureState(TextureState state, int handle, const char* value);

void setTransformState(TransformState state, int handle, const char* value);

//this is used to configure a pass monitor
void setPassMonitor(passState *state);
void finalizePassMonitor();

protected:

//These functions parse the values and convert them to GL values
bool isTrue(const char* value);

bool isFalse(const char* value);

GLenum compareFunc(const char* value);

GLenum blendFactor(const char* value);

GLenum stencilOp(const char* value);

GLenum blendOp(const char* value);

GLenum polyMode(const char* value);

passState *m_state;

blendStateItem *m bs;
depthStateItem *m ds;
stencilStateItem *m_ss;
primitiveStateItem *m_ps;
alphaStateItem *m_as;
colorStateItem *m_cs;
fogStateItem *m_fs;
pointStateItem *m ptS;

66

https://download.autodesk.com/us/maya/2009help/API/_observer_8h-example.html
https://download.autodesk.com/us/maya/2009help/API/_observer_8h-example.html
https://download.autodesk.com/us/maya/2009help/API/_observer_8h-example.html
https://download.autodesk.com/us/maya/2009help/API/_observer_8h-example.html

Observer Pattern Usage

e Ogre3D (Graphics
Engine)
o Neat study here using
cppdepend
o https://www.cppdepend.co
m/ogre3d

m Implements with a
‘listener’ object.

m hitps://www.ogre3d.or
g/docs/api/1.8/class
ogre_1_1_render_sys
tem_1_1_listener.htm
I

The observer is a pattern in which an object, called the subject, maintains a list of its dependents, called observers, and notifies them automatically of any state
changes, usually by calling one of their methods. It is mainly used to implement event handling systems.

Ogre3d use Listener classes to implement the observer pattern

Let's search for Listener classes for OgreMain project

SELECT TYPES FROM PROJECTS "OgreMain" WHERE NamelLike "Listener$"

types of

30types matched
(=[5 OgreMain
2-{} Ogre (2 9...
ﬁg Scen r+ShadowCasterSc 77
%% CompositorChain+RQLiStEREF 40
“14 ScriptCompilerListener 33
“t4 Compositorinstance+Listener g
44 MovableObject+Listener 3
% WindowEventListener 7
%3 RenderTargetListener 7
4% ResourceGroupListener 7
)
4
4
=

10...

% Node-Listener
“44 Resource+Listener
44 FrameListener
Sum [

Ogre::RenderSystem::Listener Class Reference

Defines a listener on the custom events that this render system can raise. More...

#include <OgreRenderSystem.h>

Public Member Functions

Listener ()
virtual ~Listener ()

virtual void eventOccurred (const String &eventName, const NameValuePairList *parameters=0)=0
A rendersystem-specific event occurred. More...

67

https://www.cppdepend.com/ogre3d
https://www.cppdepend.com/ogre3d
https://www.ogre3d.org/docs/api/1.8/class_ogre_1_1_render_system_1_1_listener.html
https://www.ogre3d.org/docs/api/1.8/class_ogre_1_1_render_system_1_1_listener.html
https://www.ogre3d.org/docs/api/1.8/class_ogre_1_1_render_system_1_1_listener.html
https://www.ogre3d.org/docs/api/1.8/class_ogre_1_1_render_system_1_1_listener.html
https://www.ogre3d.org/docs/api/1.8/class_ogre_1_1_render_system_1_1_listener.html

More Ideas on Observer Pattern

Some other *neat® ideas -

e Some C++ improvements
o Replace raw pointers with smart_ptr’s
m This can actually become very important as the observers may be part of different
subsystems that have to shutdown or restart.
o As mentioned before, use enum class instead of enum
o *l have an example3.cpp® in the repo showing this cleanup
e Consider using other data structures than std: :forward_list
o Observers may need to be ordered based on priority (i.e. use priority _queue)
o Consider using ‘unordered_map’ instead of map as shown in my examples for
constant time average lookup.

69

Game Prog. Patterns Book

e Consider avoiding dynamic
memory allocation at runtime with a

fixed size of observers

o Or otherwise consider a ‘linked’
implementation
m See Game Programming patterns
Book
m Notice Subject and Observer each
just store a pointer to the next
observer

ORSERVER OBSERVER

SUBDELT

NEXT -

NEXT- =

| B

HEAD—

To implement this, first we’ll get rid of the array in Subject and replace it with a
pointer to the head of the list of observers:

class Subject

{
Subject()
: head_(NULL)
{3

private:
Observer* head_;

s
Then we’ll extend Observer with a pointer to the next observer in the list:

class Observer

{

friend class Subject;

public:
Observer ()
: next_(NULL)
{}

private:
Observerx next_;

}s

Revisiting Angry Birds

A Summary of what we have learned

71

(Question for Audience) Thoughts? (1/2)

e |'m certain that the Observer pattern could

help us here.
o But what do folks think about the ‘scaling’ in this — Y
context? rack of progress

72

Scoring

(Question for Audience) Thoughts? (2/2)

Bird Sounds

e |'m certain that the Observer pattern could

help us here.
o But what do folks think about the ‘scaling’ in this — Voo some Camesiai Foapis
CO nteXt’? track of progress

o We do have a problem if too many events are
registered per object -- i.e. we have to iterate one at a
time through our objects.

m Possible Solution: Push each event into some
queue, maybe handle that queue in another
thread or asynchronously depending on event
type

e Here’s alink to event queue if you can
totally decouple subject from observer.
e (Also may open up to threads more)

m Possible Solution: Perhaps other models, e.g.

Actor Model [More] 73

https://gameprogrammingpatterns.com/event-queue.html
https://en.wikipedia.org/wiki/Actor_model

Conclusion

A Summary of what we have learned

74

Summary of what we have learned and should learn next

e \We've built out the observer pattern from a very simple implementation to
something reasonably useable
e The observer pattern isn’t perfect, but it's a good candidate for 1 to many

interactions.
o The pattern is extensible, maintainable, and flexible -- there’s a reason it's quite popular.

e There exist many variations of the observer pattern--so take a look at some
codebases to see different implementations

75

Going Further

Some things that may be useful for learning more design patterns

76

example3/main.cpp

e I've included in the repo a more modernized code using smart pointers and

usage of enum class
o Used std: :unordered_map instead of std: :map (assume we don’t care about order)
o lused shared ptr<lObserver> instead of raw pointers
m Note: You'll need to think a bit about where you want the ownership to be (i.e. you could
possibly move ownership and use a unique_ptr instead)
m Note: There will be some CoreCPP talk from 2022 talking about the dangers of
shared_ptr and performance.

lef std::forward list<std::shared ptr<IObserver>> ObserversList;

typedef std::unordered map<MessageTypes, ObserversList> ObserversMap;
ObserversMap mObservers; '

Resources

e (Note: These are listed in the order that | would watch these)
e Game Programming Patterns part 7.1 - (Reading) Observer Pattern
o https://www.youtube.com/watch?v=ryBEmO_5Y-g

e https://apibook.com/
o Check out Martin Reddy’s book for another nice implementation
o |learned a few tricks and extended the implementation.

e Tony Van Eerd: Thread-safe Observer Pattern - You're doing it wrong
o hitps://www.youtube.com/watch?v=RVvVQply6zc

78

https://www.youtube.com/watch?v=ryBEm0_5Y-g
https://apibook.com/
https://www.youtube.com/watch?v=RVvVQpIy6zc

More General Design Patterns

e \ideos
o C++ Design Patterns: From C++03 to C++17 - Fedor Pikus - CppCon 2019

m Overview of evolution of design patterns
o Introduction to Design Patterns (Back to Basics Track CPPCON 2020)
o The Factory Pattern (Software Desian Track) - Mike Shah - CppCon 2021

o And many more!
m hitps://www.youtube.com/results?search gquery=cppcon+design+patterns

e Books
o API Design for C++
o Game Programming Patterns
o Modern C++ Design

79

https://www.youtube.com/watch?v=MdtYi0vvct0
https://www.youtube.com/watch?v=2UUqX2eIdSM
https://www.youtube.com/watch?v=4xrNtB60g0g
https://www.youtube.com/results?search_query=cppcon+design+patterns

Thank you! +

The Observer Design Pattern

Social: @MichaelShah 16:45 - 17:45, Thur, 15th September 2022
Web: mshah.io

Courses: courses.mshah.io

YouTube: 60 minutes | Introductory Audience
www . youtube.com/c/MikeShah

MIKE SHAH

Cppcon A/\

The C++ Conference September 12th-16th

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

81

